通過算

東西にのびる線路がありま す。ある時A君が線路の近くに立っていると、西から特急、東から急行が近づいてきてA君のちょうど目の前ですれちがい始めました。すれち がい始めてから10秒後に線路の向こう側が見えました。
特急と急行の列車の長さがそれぞれ200m、160mで、速さの比が3:2であることが分かっているとして、次の問いに答えなさい。

(1) 特急と急行の速さはそれぞれ秒速 何mですか。

(2) A君の真東にいたB君も同じ特急 と急行を見ていました。B君の目の前を急行が通過し始めてから、特急が通過し終わるまでの50/3秒間はずっと線路の向こう 側は見えないままでした。A君とB君の間の距離を求めなさい。

(甲陽)





解 説

(1)A君の前を、特急と急行の進む みちのりの比200:160=5:4と速さの比3:2からすると、A君の前を通過する のにかかる時間の比は5:6となり、急行がA君の前をはなれるのが10秒後と分かる。160÷10=16m/秒・・・ 急行の速さ
16÷2×3=24m/秒・・・特急の速さ

答え 特急は秒速24m、急行は秒速16m

(2)

 24m/秒×50/3秒=400m、 400m−200m=200mのみちのりを2つの列車が近づくことになる。
出会った所がAの前なので、200m÷(24+16)m/秒=5秒・・・●→○   5秒×16m/ 秒=80m

答え 80m

考 察
はじまりと終わりの時間を●○で表してそれぞれの列車の位置を書込みます。この場合の「終わり」はAですれちがい始めた時です。一方特急 だけに注目すると50/3秒の間に最後部が400m移動したことになります。



中 学受験算数を攻略〜プロ家庭教師へ